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• Artificial Intelligence (AI) is used in conjunction with 
computational electromagnetics to develop a 
modeling environment suitable for the “accurate” and 
“quick” characterization of high energy - high density 
advanced electric power systems applications. 

• The integrated AI-Electromagnetic models can be 
used as well to model components in the Virtual Test 
Bed. 



• In this phase of the work, the modeling environment 
is used to perform the following tasks:

– Conduct a comparison between two AI techniques, namely 
Artificial Neural Networks ANN and Fuzzy Logic (FL) based 
models as applied to a motor drive.

– Develop AI-Electromagnetic models for the following 
systems:

o Electromagnetic Actuators
o Electromagnetic Launchers
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Direct Problem vs. Inverse Problem

Device/System
Specifications Analysis Device/System

Performance

Direct Problem

Performance Synthesis Device 

Inverse Problem



Characteristics of Inverse & Direct Problems

 Direct problem:

It is well posed
• existence : a solution exists
• unique : one solution
• stability : solution depends continuously on data

Inverse Problem:

– usually less is known about the problem
– ill posed



Solution Steps in Inverse Problem Methodology
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Optimization Methods

• gradient schemes or deterministic methods
• evolution strategies (ESs)
• artificial neural networks (ANNs)
• stochastic methods
• simulated annealing
• hybrid techniques
• genetic algorithms (GAs)



Associated Difficulties in Solving Inverse Problems
In Electromagnetics

1. convergence difficulties, as with gradient or 
deterministic methods, when the object function has 
multiple local minimas or maximas.  

2. convergence problems lead to inaccurate and 
unacceptable solutions.

3. random stochastic methods are, in general, inefficient or 
computationally intensive.
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THE SOURCE IDENTIFICATION PROBLEM

• An inaccessible region contains an electrostatic source 
or a charged region.

• The values of measured potentials, φm, for a test case 
are given.

Objective?

To correctly identify the various properties of the 
electrostatic source.



The Geometry of the Source Problem.
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Object Function

n is the number of points at which the electrostatic 
potential is measured.  In our case, n = 8.
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Constraints

X  +  L/2  ≤ 300 (1)
X  - L/2 ≥ 100 (2)
Y  +  W/2  ≤ 300 (3)
Y  - W/2  ≥ 100 (4)
a  <  δ <  b (5)
c  <  ε <  d (6)



The Parameters of GA Optimization

Number of Iterations 50

Number of Field 
Evaluations

500

Population 10

String Length 120

Probability of Mutation 0.39 to 0.03

Probability of 
Crossover

0.95



THE CRACK IDENTIFICATION PROBLEM

Objective: To identify the irregularities or defects in 
inaccessible locations using nondestructive testing (NDT).  
Specifically, it is required to identify the exact nature of a 
crack present in a conducting medium.  

Problem Challenges:
1. A rough object function with several minimas.
2. A gradient algorithm used previously could not converge 

satisfactorily.  Several techniques had to be applied before 
satisfactory results were achieved.



Features of FEM combined with Optimization (GAs) for 
Nondestructive Testing

• Conventional methods of NDE, like moving a coil over 
a magnetic system, only inform us about the existence of a 
defect.  

• No information is generated about its nature.



PARAMETER IDENTIFICATION PROBLEM

L = the length of the crack,
W = the width of the crack,
ϑ = the orientation of the crack,
X0 = the X-coordinate of the centroid of the crack 
Y0 = the Y-coordinate of the centroid of the crack.
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Performance Prediction of SRM Drive Systems 
Under Normal and Fault Operating Conditions 

Using GA-Based ANN Method



THE MODELING ENVIRONMENT

The modeling environment consists of three main components:

– The first is an electromagnetic/electric circuit algorithm that 
indirectly couples FE/SS models. 

– The second component uses ANNs, for their well known 
interpolation capabilities for highly nonlinear systems, to predict 
the performance characteristics of an SRM drive system.

– The third uses GAs for their ability to search a complex structural 
and parametric space to find good ANN solutions.
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SRM Inductance Family of Curves



A New Method of Searching for an Optimal Neural Network Using 
Genetic Algorithms

• In this work, a new encoding method is introduced. Rather than binary 
or real number encoding as introduced before, matrices are taken as 
elements in a string.

• Compared to the traditional way of encoding the weights as a list, the 
primary advantage of matrix encoding is that the population consists of 
individuals that represent various ANN structures.

• Therefore, using GA operators can not only search for optimal weights 
and biases but also a wide range of possible structures are explored. 

• As a result of using matrices as elements of a string the definitions of 
the genetic operators, mutation and crossover, are expanded so as they 
can be applied to matrices. 



Structure of a feedforward ANN



Definition of Matrix Mutation



Definition of Matrix Crossover
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A CASE  STUDY

• The modeling environment presented in this paper is used to 
characterize an SRM drive system under three different operating
conditions:
– normal (no-fault)

– loss of a phase (fault)
occurs when a transistor burns out or a fuse in the phase 
leg opens out, creating an open circuit in one phase of the 
motor and resulting in the loss of one phase

– partial phase short (fault). 
takes place when part of the turns forming a stator winding 
is shorted. In such case, all the phases are still in operation 
except that the faulted phase has less effective number of 
turns.



• Also based on the topology of the machine and the power electronic 
inverter used, a state space model was developed for the SRM. 

• The state space equations can be written as follows:

Vk=RI+LdI/dt+ωmIdL/dθ (1)
dωm/dt=(Tem-Bω-TL)/J (2)
Tem=Σ ik2dLk k=a, b, c         (3)
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Type of Data Shaft Speed 

(rpm) 

RMS current (Amps) 

Simulation 8985 34.02 

Experimental 9013 34.85 

Table: Comparison of Simulation and Experimental Results 



ANN model Speed Results for Normal (no-fault) Case



ANN Model of Healthy Phase Current Results 
for Partial Fault Case



Rotor Speed Prediction of ANNs at One Phase Failure Case



Comparison of FE/SS data and results from ANN model 
at TL=25 ft-lbs.
(Normal Case)

ft-lbs.



Comparison of FE/SS data and results from ANN model at a phase failure 
case, Tl=25 ft-lbs.
(Loss of a Phase)



Comparison of FE/SS and results from ANN model at a phase failure 
case, Tl=25 ft-lbs.
(Loss of a Phase)



Comparison of FE/SS and results from ANN model at a phase short case,
Tl=25 ft-lbs.

(50% Phase Short)



Comparison of FE/SS and results from ANN model at a phase short case,
Tl=25 ft-lbs.

(50% Phase Short)



Characterization of SRM Drives 
Using Fuzzy Inference Systems 



Abstract
– A fuzzy inference system is used to characterize 

switched reluctance motor, SRM, drive systems under 
normal and fault operating conditions.

– The Fuzzy Logic (FL) is applied for its ability to be 
very suitable for problems with large uncertainly.

– Knowledge about the system is accumulated using 
coupled Finite-Element (FE) magnetic field and state 
space (SS) models. 



Fuzzy Inference System (FIS) 

*The FL modeling approach is based on the use of Fuzzy 
Inference Systems.
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 • The FIS consists of: 
z rule base containing a number of IF-

THEN rules, 
z database that defines the membership 

functions,
z decision-making unit that performs 

the inference operations, 
z fuzzification interface that transforms 

the crisp inputs into degree of match, 
and 

z defuzzification interface that 
transforms the fuzzy results to crisp 
output. 



Adaptive-Network-Based FIS (ANFIS) 
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Result Analysis

Speed Generated from the SS-FE Model and the FL Model (Normal Case) at Different DC Voltage 
and Starting Angel (Fixed Torque Load TL = 20 ft-lb)
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Result Analysis (continued)

Current Generated from the FE-SS Model and the FL Model (Normal Case) at Different DC 
Voltage and Starting Angel (Fixed Torque Load TL = 20 ft-lb)
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Result Analysis (continued)

Speed Generated from the FE-SS Model and the FL Model (Under Phase Loss) at Different DC 
Voltage and Starting Angel (Fixed Torque Load TL = 20 ft-lb)
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Result Analysis (continued)

Figure 8-10-a: Current Generated from the SS-FE Model (Under Phase Loss) at Different DC 
Voltage and Starting Angel (Fixed Torque Load TL=20 ft-lb)
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Result Analysis (continued)

Speed Generated from the FE-SS Model and the FE Model (Under Phase Short) at Different DC 
Voltage and Starting Angel (Fixed Torque Load TL = 20 ft-lb)
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Result Analysis (continued)

Healthy Current Generated from the FE-SS Model and the FE Model (Under Phase Short) at 
Different DC Voltage and Starting Angel (Fixed Torque Load TL = 20 ft-lb)
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Result Analysis (continued)

Short Current Generated from the FE-SS Model and the FE Model (Under Phase Short) at Different 
DC Voltage and Starting Angel (Fixed Torque Load TL = 20 ft-lb)
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Computing Time comparison
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Computing Time comparison (continued)
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Time Taken by the Models to 
Generate Data
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Comparison between the AI Models 
(continued)
Data Required 

Number of Data
Points Needed

Normal Case Phase Loss Case Phase Short Case

ANN 1316 Points 1184 Points 1225 Points

FL 700 Points 650 Points 675 Points

Percentage of
ANN

53.191% 54.90% 55.10%

  Comparison of the Number of Data Points Needed for Training

Training Time 

Training Time  Normal Case Phase Loss Case Phase Short Case

ANN 26 min 22min  24min

FL 9 min 7min 11min

Percentage of
ANN Time

34.61% 31.81% 45.83

   Comparison of the Time Needed for Training



Finally, it should be noted that the FL model 
offered accuracy as high as 97 %. Less than 3% 
average error was achieved in all cases and for any 
output. A maximum error was as low as 9% with 
standard deviation of no more than 2.5%. 



Integrated AI–EM Approach for the Characterization of 
AC Actuators

• The performance characteristics of electromagnetic AC 
Actuators are predicted using an integrated Artificial 
Intelligence – Electromagnetic, AI - EM, approach. 

• The approach makes use of electromagnetic field 
solutions in conjunction with AI fuzzy logic, FL, based 
models. 

• This approach is applied to a prototype AC actuator 
under static and motion conditions. 

• The results are compared to test data for verification.



Outline of AC Actuator



Iterative EM – SS Approach



Armature

FI FD FS

Fg Fmag x, v, a
assumed
direction

Layout of Force on Armature

•Fmag is the magnetic force;

• FD is the damping force; 

• g is the gravitational constant; 

• m is the mass of the armature; 

• K is spring stiffness, and

• x is the spring displacement

• v is the velocity



Main Coil Current vs. Time and Position 



Shading Ring Current vs. Time and Position 



Magnetic Force Simulation vs. Time and Armature Position at 120V RMS 
excitation voltage



Magnetic Force and Test Data vs. Time and at 6.096mm for 120V RMS Excitation 
Voltage



Main Current Shading Ring 
current

Magnetic Force

Average 
Error

Maximum
Error

Average
Error

Maximum
Error

Average
Error

Maximum
Error

FL 0.98% 1.5% 2.027% 5.12% 1.2% 1.5%

ANN 2.10% 3.72% 3.4% 8.3% 8.2% 8.5%

Average Error and Maximum Error for both FL and ANN relative to FE-SS Model



Offline 
computation

Training Time Online Computation 
for 100 data points

SS-FE 10 hrs 48 minutes 0 minutes 3 hrs 20 minutes

FL 10 hrs 48 minutes 3.5minutes < 1 sec

ANN 10 hrs 48 minutes 27 minutes < 1 sec

Comparison of  Computational Time



Main Coil Currentvs. time for  
Combined Static – Motion 
Cases



Combined Motion and Static 
Case Results



Motion Results are shown for 120V Case

Data Measured FL

Main current peak (A) 3.12 3.91

Time Ipeak (ms) 6.7 6.90

Magnetic force Peak (N) 47.10 56.77

Time Fpeak (ms) 7.56 8.40

Time to seal 16.50 14



Multistage Capacitive Driven Coil Launcher



- The stator of a launcher is made up of  many stages energized according to 
certain time sequence.
- This time sequence is an important design parameter as it controls the 
acceleration of the projectile.
- To achieve maximum acceleration of the launcher; the magnetic force must be 
positive all the time in the desired direction. Thus the penetration depth of the flux 
linkage in the armature must be at a maximum level. 
- The variation of the penetration depth of the flux linkage as function of the 
armature (projectile position) is illustrated by the magnetic field solutions shown 
below.
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